Paola Bergamini,*a Emiliana Costa, b Christian Ganter, A. Guy Orpen and Paul G. Pringle b

- ^a Dipartimento di Chimica dell'Università di Ferrara e Centro di Studio su Fotoreattività e Catalisi del CNR, via L. Borsari 46, 44100 Ferrara, Italy
- ^b School of Chemistry, University of Bristol, Cantocks Close, Bristol, UK BS8 1TS

Received 5th October 1998, Accepted 16th December 1998

Treatment of [PtX(CH₃)(diphos)] **1** {X = Cl, Br, I; diphos = (4R,5R)-4,5-bis(diphenylphosphinomethyl)-2,2-dimethyl-1,3-dioxolane (diop), (2S,4S)-2,4-bis(diphenylphosphino)pentane (skewphos), (2S,3S)-2,3-bis(diphenylphosphino)butane (chiraphos)} with N₂CHSiMe₃ gives two series of products: "α-products", [PtX(CH₂SiMe₃)(diphos)] **2** and "β-products" [PtX(CH₂SiMe₃)(diphos)] **3**. Which product is formed and their stability depends on the ancillary ligands X and diphos. Treatment of [PtCl(CH₃)(diop)] **1a** with an excess of N₂CHSiMe₃ gives the α-product [PtCl(CH₂SiMe₃)(diop)] **2a** in high yield. The structure of **2a** was confirmed by X-ray crystallography. Under similar conditions [PtCl(CH₃)(skewphos)] **1d** reacts with an excess of N₂CHSiMe₃ to give the β-product [PtCl(CH₂CH₂SiMe₃)(skewphos)] **3d** as shown unambiguously by a combination of ¹H-COSY and ³¹P NMR spectroscopy. It is established that the reaction sequence is **1** \longrightarrow **3** \longrightarrow **2** and the conversion of **3** \longrightarrow **2** is *via* a β-hydrogen migration and elimination of CH₂=CHSiMe₃. The stability of **3** with respect to β-hydrogen elimination is in the order Cl > Br > I and chiraphos > skewphos > diop; a mechanism is proposed based on five-coordinate platinum(II) intermediates to rationalize these trends. The reactions of [PtX(CH₃)(diphos)] with N₂CHSiMe₃ and N₂CHCOOEt are contrasted and it is concluded that in PtCHRMe species, a SiMe₃ group facilitates β-hydrogen migration while a CO₂Et group retards β-hydrogen migration. The complexes **2** are catalysts for the conversion of N₂CHSiMe₃ to Me₃SiCH=CHSiMe₃.

Introduction

The formation of a C–C bond at a metal centre and β-hydrogen elimination are two of the most important steps in many transition metal complex catalysed processes.¹ We and others have previously shown that carbenes generated from diazocarbonyls insert into Pt–CH₃ bonds [eqn. (1)] to give branched alkyl-

platinum(II) species which are remarkably kinetically stable with respect to β -hydrogen transfer. Moreover carbene insertions into the Pt–CH $_3$ bonds in optically active complexes of the type [PtX(CH $_3$)(diphos)] occurred with modest diastereoselectivity and no epimerisation at the α -carbon was observed. We wanted to investigate whether the bulky, electron rich carbene CHSiMe $_3$ would insert into Pt–CH $_3$ with greater diastereoselectivity. However we report here that when trimethylsilyldiazomethane is the reagent, Pt–CH $_3$ insertion is followed by rapid β -hydrogen migration. The significance of these

observations to the mechanism of β -hydrogen migration in PtCHRCH₃ species is discussed.

Results and discussion

Treatment of [PtCl(CH₃)(R,R-diop)] **1a** [R,R-diop = (4R,5R)-4,5-bis(diphenylphosphinomethyl)-2,2-dimethyl-1,3-dioxolane] with more than two equivalents of N₂CHSiMe₃ in CH₂Cl₂ gave exclusively [PtCl(CH₂SiMe₃)(R,R-diop)] **2a** (see Scheme 1) as shown by a combination of elemental analysis, IR, ³¹P, ¹H NMR spectroscopy (see Experimental section and Table 1 for the data) and X-ray crystallography (see below). Moreover treatment of [PtCl(CH₂SiMe₃)(cod)]⁴ with R,R-diop also gave the complex **2a** [eqn. (2)] as shown by ³¹P NMR spectroscopy.

Pt Cl PP Cl CH₂SiMe₃ P CH₂SiMe₃ (2)

2a P P =
$$R,R$$
-diop

2d P P = S,S -skewphos

2g P P = S,S -chiraphos

The crystal structure of **2a** was determined by conventional single crystal methods. Fig. 1(a) and (b) show the molecular structures of the two independent molecules of complex **2a** present in the crystal and Table 2 gives important structural parameters for these molecules. The structure determination

unambiguously confirms the absolute configuration shown. As expected the platinum is square planar with small deviations from ideal coordination geometry and the Pt-P distances

 $CI \stackrel{\frown}{P} = S, S$ -chiraphos

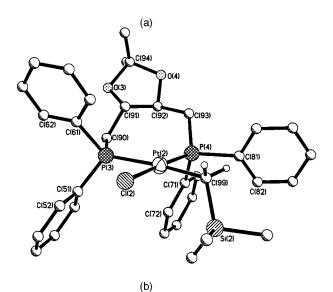
X = Br P P = S, S-skewphos

P = S,S-skewphos

X = Br P P = S, S-chiraphos

P = S,S-chiraphos

Scheme 1


Table 1 31P NMR data

Compound	$\delta(P_A)$	$^{1}J(PtP_{A})$	$\delta(P_{\rm B})$	$^{1}J(PtP_{B})$	$^{2}J(P_{A}P_{B})$
2a	5.5	4329	8.5	1745	14
2b	5.7	4323	5.6	1763	14
2c	3.2	4157	0.6	1799	15
2d	16.2	4224	15.6	1730	23
2e	16.0	4222	13.7	1746	22
2f	13.2	4064	9.5	1765	24
2g	45.0	4152	42.5	1780	13
2i	41.3	4040	42.2	1769	22
3a	7.7	4684	8.3	1492	12
3b	8.0	4676	6.3	1528	12
3c	4.5	4473	1.3	1567	12
3d	18.4	4545	15.2	1466	22
3e	18.5	4545	14.2	1493	22
3f	14.7	4361	10.5	1518	12
3g	44.4	4520	44.6	1504	10
3h	45.1	4516	44.4	1509	12
3i	42.7	4355	42.2	1511	12

^a Spectra (81 MHz) measured in MeCN at 21 °C; chemical shifts (δ) in ppm (± 0.1) to high frequency of 85% H₃PO₄. Coupling constants (J) in Hz (± 3). P_A is trans to the halogen and P_B is trans to the carbon.

reflect the higher trans influence of the CH2SiMe3 group compared with chloride. As shown in the torsion angle data given in Table 2, there is considerable variation in the conformation of the R,R-diop ligand (and of the CH₂SiMe₃ ligand) in the two independent molecules.

Treatment of $[PtCl(CH_3)(S,S-skewphos)]$ **1d** [S,S-skewphos =(2S,4S)-2,4-bis(diphenylphosphino)pentane] with an excess of N₂CHSiMe₃ gave (after 15 min) a new species quantitatively which has been isolated and assigned the structure 3d (see Scheme 1) on the basis of elemental analysis, ³¹P NMR, ¹³C DEPT, ¹H and particularly ¹H-COSY NMR, (see Table 1 and Experimental section for the data).

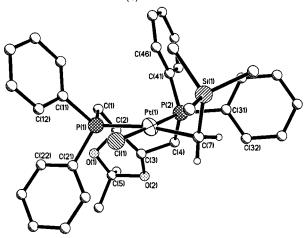


Fig. 1 (a) Molecular structure of first independent molecule of 2a showing labelling scheme, all hydrogen atoms have been omitted for clarity. (b) Molecular structure of second independent molecule of 2a showing labelling scheme, all hydrogen atoms have been omitted for clarity.

Table 2 Selected bond distances (Å), angles (°) and torsion angles (°) from the crystal structure of 2a

Pt–P(1) (<i>trans</i> to C)	2.36(2)	2.321(13)	Pt-C	2.18(4)	2.09(3)
Pt–P(2) (trans to Cl)	2.215(11)	2.242(13)	Pt-C1	2.371(13)	2.366(10)
$C-Pt-P_{cis}$	93.5(12)	92.8(8)	C-Pt-Cl	83.6(12)	83.6(8)
$C-Pt-P_{trans}$	168.6(12)	169.5(8)	P_{trans} -Pt-C1	175.9(5)	176.3(5)
P-Pt-P	96.2(5)	97.7(5)	P _{cis} -Pt-Cl	87.0(4)	86.0(5)
Cl-Pt-C-Si	-71.3	71.1	Pt-P _{trans to C} -C-C	70.0	-57.0
(P)C-C-C-C(P)	-82.0	-89.6	Pt-P _{cis to C} -C-C	39.7	-77.4
P _{trans to C} -C-C	-24.6	107.8	P-Pt-P _{trans to C} -C	-8.6	-6.4
P _{cis to C} -C-C-C	66.6	61.6	P-Pt-P _{cis} to C-C	-58.7	60.2

Thus there is apparently a sharp contrast in the products 2a, with a SiMe₃ group on the α -carbon (an " α -product") and 3d, with a $SiMe_3$ group on the β -carbon (a " β -product") formed by addition of an excess of Me₃SiCHN₂ to [PtCl(CH₃)(R,Rdiop)] and [PtCl(CH₃)(S,S-skewphos)] respectively. However further study by 31P NMR spectroscopy revealed that if 1 equivalent of Me₃SiCHN₂ is added to [PtCl(CH₃)(R,R-diop)] 1a, a complex having ³¹P parameters similar to 3d is observed (Table 1) in the mixture of species present and is assigned the structure 3a; this β-product 3a appears stable in CDCl₃ for at least 24 h. After 2 h treatment of [PtCl(CH₃)-(S,S-skewphos)] 1d with an excess of Me₃SiCHN₂, a small amount of a second species with the same ³¹P NMR parameters as 2d [generated via the route shown in eqn. (2)] was observed (Table 1). Therefore it is apparent that **1a** and **1d** with an excess of Me₃SiCHN₂ undergo the following sequence of transformations: $Pt-CH_3 \longrightarrow Pt-CH_2CH_2SiMe_3 \longrightarrow PtCH_2SiMe_3$ (see Scheme 1).

The same pattern is seen for the reactions of the complexes $[PtX(CH_3)(R,R\text{-}diop)]$ (X = Br **1b** or I **1c**) and $[PtX(CH_3)(S,S\text{-}skewphos)]$ (X = Br **1e** or I **1f**) with Me₃SiCHN₂. Thus ³¹P NMR spectra show that upon treatment of **1a**–**f** with 1 equivalent of Me₃SiCHN₂ the β -products, assigned structures **3a**–**f** on the basis of the similarity of their ¹J(PtP) values (Table 1), are formed which are stable in the absence of an excess of Me₃SiCHN₂. When an excess of Me₃SiCHN₂ is used, the α -products, assigned structures **2a**–**f** again on the basis of the similarity of their ¹J(PtP) values, are formed (Table 1). In these reactions, with the exception of **2a** and **3d** (see above), the products were not isolated.

It was noticed that the chloro complexes undergo the second step in Scheme 1 $(3 \longrightarrow 2)$ more slowly than their bromo and iodo analogues. The six-membered chelate (skewphos) complexes also undergo the second step more slowly than the seven-membered chelate (diop) analogues which prompted us to investigate whether there was a trend in reactivity with chelate ring size. Thus the reactions of the five-membered chelate complexes 1g-i [chiraphos, (2S,3S)-2,3-bis(diphenylphosphino)ethane] with Me_3SiCHN_2 were followed by ^{31}P NMR spectroscopy and it was revealed that the reactions were slower than 1a-f and, with 1g and 1h, the only products

Scheme 2

observed (even after 20 h in the presence of an excess of Me₃-SiCHN₂) were the β-products 3g and 3h, *i.e.* the second step in Scheme 2 with the five-membered chelates was not observed; 2g has been generated *via* the route shown in eqn. (2). With the iodo complex 1i, a species assigned to the α-product 2i (identified from its 31 P parameters only, see Table 1) was detected when an excess of N₂CHSiMe₃ was used, consistent with the greater tendency of the iodo complexes to form the α products.

A mechanism to explain the formation of 2a–f and 3a–i from the corresponding 1a–i and N_2 CHSiMe $_3$ is proposed in Scheme 2. Insertion of the CHSiMe $_3$ into the Pt–CH $_3$ bond of 1a–i (step i) to give the transient species A (the mechanism for insertions of this type we have previously discussed in detail 2) is followed by β -hydrogen migration (step ii) to give a five-coordinate hydridoplatinum(II) species B. 5 A β -hydrogen migration to the substituted alkenyl carbon (step iii) would give the observed β -products 3a–i. Alternatively, dissociation of vinyltrimethylsilane from B (step iv) would give the four-coordinate hydrido species C which would then rapidly insert more CHSiMe $_3$ (step v) to give the observed α -products 2a–f.

Further insight into the reactions discussed above was gained from observations made with the deuterium-labelled complex d_3 -1a. Monitoring the reaction of d_3 -1a with 2 equivalents of N_2 CHSiMe₃ in CHCl₃ by 2 H NMR spectroscopy revealed that vinyltrimethylsilane was the only detected organic product and that the deuterium was distributed over all three alkenyl sites equally (3 equally intense singlets at δ 6.18, 5.93 and 5.67 in agreement with the 1 H shifts measured for a genuine sample of CH₂=CHSiMe₃); a deuterium resonance at δ 0.51 was also detected and assigned to the α -methylene of the trimethylsilylmethyl ligand [see eqn. (3)]. Scheme 3 shows how this

J. Chem. Soc., Dalton Trans., 1999, 861-865

Scheme 3

ĊD₂H

scrambling of the deuterium can be rationalised by invoking a series of β -hydrogen migrations. These results are consistent with the β -hydrogen migrations from **B** (steps ii and iii in Scheme 2) being reversible and occurring rapidly relative to the alkene elimination from **B** (step iv in Scheme 2).

The deuteriation studies show that the complexes [PtX-(CHMeSiMe₃)(diphos)] and [PtX(CH₂CH₂SiMe₃)(diphos)] can interconvert rapidly via β -hydrogen migrations.

It is of interest to consider how the substituents R may influence the thermodynamics and kinetics of the systems shown in eqn. (4). We have never observed species containing

$$\begin{array}{c|c}
P & CI \\
P & CH-R
\end{array}$$

$$\begin{array}{c|c}
P & CI \\
P & CH_2
\end{array}$$

$$\begin{array}{c|c}
CH_2 & CH_2
\end{array}$$

$$\begin{array}{c|c}
CH_2 - R
\end{array}$$

$$\begin{array}{c|c}
CH_2 - R
\end{array}$$

 $R = SiMe_3 \text{ or } CO_2Et \quad P P = R,R-diop$

the branched alkyl Pt-CHMeSiMe, nor species containing the linear alkyl Pt-CH₂CH₂CO₂Et and therefore we are not able to determine whether the instability is kinetic or thermodynamic. Young et al. 6 have recently shown that the Pt-C bond in [PtCl(CH₂SiMe₃)(PMe₃)₂] is anomalously weak and moreover have reported that ¹J(PtP) for the trans phosphorus is inversely correlated with the Pt-alkyl bond strength. Our ¹J(PtP) data (Table 1) are consistent with the Pt-CH₂SiMe₃ bonds being weaker than the Pt-CH2CH2SiMe3 bonds. Therefore one of the thermodynamic driving forces for the transformation of Pt-CHMeSiMe₃ into Pt-CH₂CH₂SiMe₃ [eqn. (4)] is the greater Pt-C bond strength. Furthermore it has been shown 7 that for steric and electronic reasons, primary alkyl metal complexes MCH₂R generally contain stronger M-C bonds than secondary alkyl metal complexes MCHR2 and thus when R is the bulky SiMe₃ group it is not surprising that the linear Pt-CH₂-CH₂SiMe₃ species is the only one observed. The stability of the branched species PtCHMeCO₂Et may be due in part to the stabilisation of the δ - charge on the α -carbon by the electronegative CO₂Et.

The greater kinetic lability of the Pt–CHMeSiMe₃ species than the Pt–CHMeCO₂Me species can be rationalised by consideration of the associative mechanism proposed in Scheme 4

which is consistent with previously reported 5,8,9 mechanisms for β -hydrogen migration in alkylplatinum(II) complexes; in coordinating solvents such as methanol, dissociation of halide or phosphine to give three-coordinate platinum(II) species as intermediates in β -hydrogen elimination have also been proposed 9 but since our reactions were carried out in CDCl₃, we have not considered this possibility further. Species **D** and **E** are transition states en route to the five-coordinate intermediate **B**. From previous work, 5 we would predict that intermediate **B** would be more stable when $R = CO_2Et$ since this yields the

better π -acceptor alkene ligand. However we suggest that the lower activation energy observed when $R = SiMe_3$ than when $R = CO_2Et$ is a consequence of two factors: (i) the lower stability of the PtCHRMe species when $R = SiMe_3$ (see above) and (ii) the stabilization of the developing $\delta +$ on the carbon β to the SiMe₃ group in \mathbf{D} by hyperconjugation.¹⁰

From the mechanism presented in Scheme 4, it might also be expected that ancillary ligands which can stabilise the five-coordinate species $\bf B$ would promote the conversion of $\bf 3 \longrightarrow \bf 2$. It is known 11 that the stability of trigonal bipyramidal platinum(II) complexes PtX_2L_3 increases in the order Cl < Br < I and thus if $\bf B$ is trigonal bipyramidal, this would explain why our bromo and iodo complexes favour the formation of $\bf 2$ more than the chloro analogues. Moreover the strain caused by the 120° angle in the diphosphine chelates in $\bf B$ would decrease in the order chiraphos (five-membered) > skewphos (six-membered) > diop (seven-membered) consistent with the preference of the diop complexes to form $\bf 2$.

The conversion of N₂CHSiMe₃ to Me₃SiCH=CHSiMe₃ is catalysed by complexes of type **2**. Hence addition of N₂CH-SiMe₃ to a solution of **2a** (0.1 equivalent) in CDCl₃ led to evolution of N₂ and formation of *trans* alkene (as shown by ¹H NMR). The catalysis turnover was slow: *ca.* 2 h⁻¹ with **2a** and *ca.* 1 h⁻¹ with complexes **2d** and **2g** [generated according to eqn. (2)]. The rate of the catalysis with **2a** was similar in CD₃CN and furthermore, when the cationic species [Pt(NCMe)-(CH₂SiMe₃)(diop)]O₃SCF₃ was generated *in situ* and used as the catalyst, only trace amounts of Me₃SiCH=CHSiMe₃ were detected among the many products that formed very rapidly. Hence we favour the mechanism shown in Scheme 5 involving uncharged intermediates.

In conclusion we have shown that the rate of β -hydrogen migration in [PtX(CHRCH₃)(diphos)] is a function of the stereoelectronic effects of R. When R = SiMe₃, β -hydrogen migration is facilitated while for R = CO₂Et, β -hydrogen migration is effectively arrested at ambient temperatures.

Experimental

All reactions were carried out in air at ca. 20 °C. The phosphines and Me₃SiCHN₂ solution were used as purchased from Aldrich. The complexes [PtX(CH₃)L₂] (L₂ = R,R-diop, S,S-skewphos, R,R-chiraphos)² and [PtCl(CH₂SiMe₃)(cod)]⁴ were made as previously described. ³¹P-{¹H} (81 MHz), ¹³C-{¹H} (50 MHz), and ¹H (200 MHz) spectra were measured using a Bruker AM200 spectrometer at 22 °C.

Preparation of [PtCl(CH₂SiMe₃)(R,R-diop)] 2a from [PtCl(CH₃)(R,R-diop)]

The complex [PtCl(CH₃)(R,R-diop)] (230 mg, 0.30 mmol) was dissolved in CH₂Cl₂ or CHCl₃ (3 cm³) and vigorously stirred while Me₃SiCHN₂ (0.45 cm³ of a 2 M solution in n-hexane,

0.90 mmol) was added. The mixture was stirred for 2 h and then the solvent removed under reduced pressure to give a white solid which was triturated with diethyl ether (2 cm³) and then filtered off to give 208 mg (80%) of product. Elemental analysis (calculated for C₃₅H₄₃ClO₂P₂PtSi): C, 51.00 (51.55); H, 5.45 (5.25%); ¹H NMR (200 MHz, CDCl₃): δ -0.20 [s, 9H, Si(CH₃)₃]; 0.4–0.7 (complex multiplets, 2H, diastereotopic PtCH₂Si); 1.12 (s, 3H, CH₃), 1.14 (s, 3H, CH₃), other diop resonances are complex multiplets centred at the following shifts: δ 2.28 (1H), 2.74 (1H), 2.91 (1H), 3.23 (1H), 3.81 (2H) 3.90 (1H) and 7.6–8.0 (20H); ¹³C NMR (50 MHz, CDCl₃, assignments from DEPT): δ 4.5 [Si(CH₃)₃]; 17.3 [d, J(PC) 88.8, J(PtC) 632, PtCH₂Si]; 27.3 (s, CH₃ of diop); 30.7 [d, J(PC) 23.5, CH₂P]; 33.4 [d, J(PC) 37.3 Hz, CH₂P]; 128–135 (complex multiplets); IR (CsI disc) v(PtCl) at 280 cm⁻¹. Crystals for the X-ray crystallography were obtained by slow diffusion of Et₂O into a CH₂Cl₂ solution of 2a.

Preparation of [PtCl(CH₂SiMe₃)(R,R-diop)] 2a from [PtCl(CH₂SiMe₃)(cod)]

To a stirred solution of the complex [PtCl(CH₂SiMe₃)(cod)] (40 mg, 0.094 mmol) in CH₂Cl₂ (1 cm³) was added a solution of diop (47 mg, 0.094 mmol) in CH₂Cl₂ (2 cm³) dropwise over 5 min *via* a syringe. After 15 min, the solvent was removed under reduced pressure and then the residue triturated with Et₂O (3 cm³) to give the product **2a** (60 mg, 78%) as a fluffy white solid. The ³¹P and ¹H NMR spectra were identical to the product **2a** obtained above. The complexes [PtCl(CH₂-SiMe₃)(skewphos)] **2d** and [PtCl(CH₂SiMe₃)(chiraphos)] **2g** were made similarly from the appropriate diphosphine in *ca*. 80% yields.

Preparation of [PtCl(CH₂CH₂SiMe₃)(S,S-skewphos)] 3d

The complex [PtCl(CH₃)(R,R-skewphos)] (60 mg, 0.088 mmol) was dissolved in CH₂Cl₂ (1 cm³) which had been previously stirred over NaHCO₃ for 10 h to remove traces of acid. Me₃-SiCHN₂ (0.175 cm³ of a 2 M solution in n-hexane, 0.35 mmol) was added. The mixture was stirred for 1 h and then the solvent removed under reduced pressure to give a white solid which was triturated with n-pentane (2 cm³) and then filtered off to give 52 mg (80%) of product. Elemental analysis (calculated for C₃₄H₄₃ClP₂PtSi): C, 52.85 (52.90); H, 5.60 (5.40%); ¹H NMR (200 MHz, CDCl₃): δ -0.40 [s, 9H, Si(CH₃)₃]; 0.15 (1H), 0.55 (1H), 1.0 (2H) (complex multiplets, assigned to two of the four PtCH₂CH₂Si protons based on the observation of cross-peaks in the COSY spectrum) other skewphos resonances are centred at the following shifts: δ 0.98 and 1.05 (2 overlapping dd, 7.1, 13.0 Hz, 6H, CH₃), 2.88 (1H), 2.72 (1H), 1.86 (2H), and 7.2–8.0 (20H); ¹³C NMR (50 MHz, CDCl₃, assignments from DEPT): δ -1.3 [Si(CH₃)₃]; 24.0 [d, J(PC) 98.0 Hz, J(PtC) not resolved, PtCH₂CH₂Si]; 23.3 (s, PtCH₂CH₂Si); other skewphos signals at 36.8 (s), 17.8 (s), 19.4 (s), 26–28 (complex multiplets), 126–137 (complex multiplets).

NMR characterisation of the other complexes

The other complexes were characterised in solution by ^{31}P NMR spectroscopy only and assigned their structures as α -products (2) or β -products (3) by comparison of their $^{1}J(PtP)$ values with those for 2a, 2d, 2g and 3d (see Table 1). In a typical experiment 0.025 mmol of complex was dissolved in CDCl₃ (0.4 cm³) and then 12.6 cm³ of Me_3SiCHN_2 in hexane (2 M, 0.025 mmol) added. When the nitrogen evolution had subsided the ^{31}P NMR spectrum was recorded. More Me_3SiCHN_2 (typically 0.1 mmol) was then added and the spectrum recorded at appropriate intervals over 24 h.

Catalysis of alkene formation from N₂CHSiMe₃

A solution of **2a** in CDCl₃ (100 μ L, 0.20 M, 0.02 mmol) was added to a solution of Me₃SiCHN₂ in hexane (100 μ L, 2 M, 0.20 mmol) diluted with CDCl₃ (0.4 cm³). Nitrogen evolution was observed and the formation of *trans*-Me₃SiCH=CHSiMe₃ monitored by ¹H NMR spectroscopy ($\delta_{\rm H}$ 6.60) after 10, 50, 90, 120 min and 24 h. The ³¹P NMR spectrum showed that **2a** was the only detected P-containing species present after 24 h. Similar experiments with **2d** and **2g** in CDCl₃ and **2a** in CD₃CN were also carried out.

Structure determination of [PtCl(CH₂SiMe₃)(R,R-diop)] 2a

Crystal data for [PtCl(CH₂SiMe₃)R,R-diop)] **2a**, C₃₅H₄₃-ClO₂P₂PtSi, M = 852.76, monoclinic, space group P2₁ (no. 4), a = 15.026(4), b = 14.802(6), c = 16.712(7) Å, β = 104.43(3)°, V = 4026(4) ų, Z = 4, D_x = 1.658 Mg m⁻³, T = 293 K, μ (Mo-K_a) = 4.123 mm⁻¹, 6262 reflections collected, 6178 unique ($R_{\rm int}$ 0.048) all used in refinement, θ ≤ 22.5°. R_1 = 0.064, wR_2 0.113. Phenyl rings were constrained to idealised geometry and all silicon and carbon atoms assigned isotropic displacement parameters. The absolute structure was confirmed by refinement of the Flack parameter [x = 0.05(3)]. 12

CCDC reference number 186/1302.

Acknowledgements

We thank EPSRC for support, NATO for a travel grant, Johnson-Matthey for a loan of platinum compounds, C. N. R. for the use of Bruker 200 MHz NMR instrument, P. G. P. thanks Ciba-Geigy for a Senior Research Fellowship, and C. G. thanks the DAAD for a post-doctoral fellowship.

References

- 1 J. P. Collman, L. S. Hegedus, J. R. Norton and R. G. Finke, Principles of Organotransition Metal Chemistry, University Science Books, Mill Valley, CA, 1987.
- 2 P. Bergamini, E. Costa, A. G. Orpen, P. G. Pringle and M. B. Smith, Organometallics, 1995, 14, 3178.
- 3 T. Kégl, L. Kollár and L. Radics, *Inorg. Chim. Acta*, 1997, **267**, 249. 4 B. Wozniak, J. D. Ruddick and G. Wilkinson, *J. Chem. Soc.* A , 1971,
- 5 G. Alibrandi, L. M. Scolaro, D. Minniti and R. Romeo, *Inorg. Chem.*, 1990, 29, 3467 and refs. therein.
- 6 R. Kapadia, J. B. Pedley and G. B. Young, *Inorg. Chim. Acta*, 1997, 265, 235.
- 7 H. E. Bryndza, L. K. Fong, R. A. Paciello, W. Tam and J. E. Bercaw, J. Am. Chem. Soc., 1987, 109, 1444 and refs. therein.
- 8 (a) G M. Whitesides, J. F. Gaash and E. R. Stedronsky, J. Am. Chem. Soc., 1972, 94, 5258; (b) P. J. Davidson, M. F. Lappert and R. Pearce, Chem. Rev., 1996, 219; (c) H. E. Bryndza, J. C. Calabrese, M. Marsi, D. C. Roe, W. Tam and J. E. Bercaw, J. Am. Chem. Soc., 1986, 108, 4805; (d) G. Alibrandi, D. Minniti, R. Romeo and P. Vitarelli, Inorg. Chim. Acta, 1984, 81, L23; (e) G. Alibrandi, D. Minniti, R. Romeo, G. Cum and R. Gallo, J. Organomet. Chem., 1985, 291, 133.
- (a) T. J. McCarthy, R. G. Nuzzo and G. M. Whitesides, *J. Am. Chem. Soc.*, 1981, 103, 1676; (b) G. Alibrandi, M. Cusumano,
 D. Minniti, L. M. Scolaro and R. Romeo, *Inorg. Chem.*, 1989, 28, 342; (c) R. Romeo, G. Alibrandi and L. M. Scolaro, *Inorg. Chem.*, 1993, 32, 4688.
- 10 W. Colvin, Chem. Soc. Rev., 1978, 7, 15.
- (a) R. Favez, R. Roulet, A. A. Pinkerton and D. Schwarzenbach, *Inorg. Chem.*, 1980, 19, 1356; (b) F. P. Fanizzi, F. P. Intini, L. Maresca, G. Natile, M. Lanfranchi and A. Tiripicchio, *J. Chem. Soc.*, *Dalton Trans.*, 1991, 1007 and refs. therein.
- 12 G. Bernardinelli and H. D. Flack, Acta Crystallogr., Sect. A, 1985, 41, 500.

Paper 8/07719C